banner



How To Find X Value In System Of Equations

Systems of Linear Equations


Often it is necessary to look at several functions of the aforementioned independent variable.  Consider the prior example where x, the number of items produced and sold, was the independent variable in three functions, the toll office, the revenue function, and the profit role.

            In full general there may be:

                        north equations

                        v variables

Solving systems of equations

            At that place are four methods for solving systems of linear equations:

                        a.  graphical solution

                        b.  algebraic solution

                        c.  emptying method

                        d.  substitution method

Graphical solution

Instance ane

            given are the ii following linear equations:

                        f(x)  =  y  = 1 +  .5x

                        f(x)  =  y  = 11 -  2x

Graph the first equation by finding two data points.  By setting first x and then y equal to zero information technology is possible to detect the y intercept on the vertical axis and the ten intercept on the horizontal axis.

            If ten = 0, so  f(0)  =  1  + .5(0)  =  1

            If y = 0, so  f(x)  =  0  = 1  +  .5x

                                                -.5x  =  1

                                                     x  =  -2

            The resulting data points are  (0,1)  and  (-ii,0)

Graph the second  equation by finding 2 information points.  Past setting starting time x and and then y equal to zero it is possible to find the y intercept on the vertical centrality and the x intercept on the horizontal axis.

            If x = 0, then  f(0)  =  11  - two(0)  =  11

            If y = 0, then  f(x)  =  0  = 11  -  2x

                                                2x  =  11

                                                     ten  =  five.5

            The resulting data points are  (0,11)  and  (v.5,0)

At the indicate of intersection of the two equations 10 and y have the same values.  From the graph these values can be read as x = 4 and y = three.

Example 2

            given are the two following linear equations:

                        f(x)  =  y  = 15 -  5x

                        f(x)  =  y  = 25 -  5x

Graph the beginning equation by finding 2 information points.  Past setting first x and and so y equal to nothing it is possible to find the y intercept on the vertical axis and the x intercept on the horizontal axis.

            If x = 0, then  f(0)  =  15  - 5(0)  =  fifteen

            If y = 0, and then  f(x)  =  0  = 15  -  5x

                                                5x  =  xv

                                                     x  =  3

            The resulting data points are  (0,15)  and  (3,0)

Graph the 2nd equation by finding ii data points.  By setting first 10 and then y equal to cypher it is possible to find the y intercept on the vertical axis and the x intercept on the horizontal axis.

            If x = 0, then  f(0)  =  25  - 5(0)  =  25

            If y = 0, so  f(x)  =  0  = 25  -  5x

                                                5x  =  25

                                                     ten  =  5

            The resulting data points are  (0,25)  and  (5,0)

From the graph it can be seen that these lines do not intersect.  They are parallel.  They accept the same slope.  In that location is no unique solution.

Example 3

            given are the two post-obit linear equations:

                        21x - 7y  =  14

                        -15x  +  5y  =  -x

            Rewrite the equations by putting them into slope intercept course.

            The first equation becomes

                        7y  =  -14  +  21x

                          y  =  -ii  +  3x

            The second equation becomes

                        5y  =  -10  +  15x

                          y  =  -two  +  3x

Graph either  equation past finding 2 information points.  Past setting get-go x and so y equal to zip information technology is possible to find the y intercept on the vertical axis and the ten intercept on the horizontal axis.

            If 10 = 0, then  f(0)  =  -2  +3(0)  =  -2

            If y = 0, and so  f(ten)  =  0  = -2  + 3x

                                                3x  =  2

                                                     x  =  2/iii

            The resulting data points are  (0,-2)  and  (ii/three,0)

From the graph it can exist seen that these equations are equivalent.  There are an infinite number of solutions.

Algebraic solution

This method will be illustrated using supply and demand assay.  This type of analysis is derived from the work of the peachy English language economist Alfred Marshall.

Q  = quantity     and  P  =  price

P (s)= the supply role    and P (d)  = the demand office

When graphing toll is placed on the vertical axis.  Thus price is the dependent variable.  It might be more logical to call back of quantity equally the dependent variable and this was the arroyo used past the groovy French economist, Leon Walras.  However past convention economists proceed to graph using Marshall'southward analysis which is referred to as the Marshallian cross.

The objective is to find an equilibrium price and quantity, i.e. a solution where toll and quantity volition have the same values in both the supply function and the toll function.

            QEastward  = the equilibrium quantity           PE  = the equilibrium price

            For equilibrium
supply  =  need
or P (due south) = P (d)

Given the post-obit functions

            P (s) =  3Q + 10  and            P (d) =  -1/2Q + fourscore

Prepare the equations equal to each other and solve for Q.

            P (s)  =  3Q + 10  =   -1/2Q + 80  = P (d)

                        iii.5Q  =  seventy

                            Q  =  20                  The equilibrium quantity is 20.

Substitute this value for Q in either equation and solve for P.

            P (s)  =  3(20) + 10

            P (due south) =  70

            P (d)  =  -ane/two(20) + fourscore

            P (d)  =  70                             The equilibrium toll is 70.


Elimination method

This method involves removing variables from the equations.  Variables are removed successively until simply a unmarried concluding  variable is left, i.e. until at that place is one equation with one unknown.  This equation is so solved for the 1 unknown.  The solution is then used in finding the second to last variable. The process is repeated by adding back variables equally their solutions are plant.

Example i

                        2x  +  3y  =  5

                        -5x   - 2y  = 4

Process: eliminate y.  The coefficients of y are not the same in the two equations but if they were  it would possible to add together the  two equations and the y terms would cancel out.  However information technology is possible through multiplication of each equation  to force  the y terms to have the aforementioned coefficients in each equation.

            Step i: Multiply the kickoff equation by 2 and multiply the 2nd equation by 3.  This gives

                        4x  +  6y  =  10

                                    -15x   - 6y  = 12

            Step 2: Add the 2 equations.  This gives

                                    -11x     =     22

                                    ten          =      -2

            Stride 3: Solve for y in either of the original equations

2(-2)  +  3y  =  5

3y  =  9

y  =  3              or

-5(-2)  - 2y  = 4

x  - 2y  =     iv

2y  =     half dozen

y  =  3

Alternate Procedure: eliminate x.  The coefficients of 10 are not the same in the ii equations but if they were  information technology would possible to add the  two equations and the y terms would cancel out.  However information technology is possible through multiplication of each equation  to force  the x terms to have the same coefficients in each equation.

            Stride ane: Multiply the first equation by five and multiply the second equation past 2.  This gives

                        10x  +  15y  =  25

                        -10x   - 4y     = 8

            Step ii: Add together the ii equations.  This gives

                                    11y      =     33

                                    y          =      3

            Step 3: Solve for x in either of the original equations

2x  +  3(3)  =  5

2x  =  -4

ten  =  -two             or

-5x     - two(3)  = iv

           - 5x =   10

10  =     -ii

Case 2

                        2x1  + 5x2  +  7xthree  =  2

                        4x1  - 4xtwo  -  3x3  =  7

                        3x1  - 3x2  -  2x3  =  v

In this example there are three variables: x1, xtwo, and tenthree.  One possible procedure is to eliminate beginning xi, to eliminate next 10two, so to solve for x3.  The value obtained for ten3 is used to solve for xii and finally the values obtained for 103 and 102 are used to solve for x1.

Procedure     Part A  Outset eliminate xane.

            Step 1 Multiply the first equation by 2 and subtract  the 2d equation from the first equation.  This gives

                        4x1  + 10x2  +  14x3  =  4                    offset equation

                        4x1  - 4xtwo  -  3x3        =  7                   second equation

                               14x2   + 17xiii     = -iii                    second equation subtracted from  the start

            Step 2 Multiply the commencement equation by 3, multiply the third equation by ii, and subtract  the third  equation from the first equation.  This gives

                        6x1  + 15x2  +  21xiii  =  6                    get-go equation

                        6x1  - 6xtwo  -  4x3       =  ten                   third equation

                               21x2   + 25xiii     = -4                    third equation subtracted from  the commencement

Process     Part B  Second eliminate xtwo.   From Function A at that place are two equations left.  From these two equations eliminate ten2.

                               14x2   + 17x3     = -3                    outset equation

                               21x2   + 25x3     = -4                   second equation

            Footstep i Multiply the first equation by 21, multiply the 2d equation by 14. and subtract  the 2nd equation from the commencement equation.  This gives

                           294xii   + 357xiii     = -63                  first equation

                           294xtwo   + 350xthree     = -56                  2nd equation

                                                  7x3  =   -7                 second equation subtracted from beginning

                                                    x3  =   -ane

Part C             Solve for xii by inserting the value obtained for 103 in either equation from Part B.

                             14x2   + 17(-1)     = -3

                                              1 4xtwo   =     14

                                                   ten2   =     1                or

                             21x2   + 25(-1)    = -iv

                                              21x2    =   21

                                                   xtwo   =     one

Part D             Solve for x1 past inserting the values obtained  x2 andxthree in any of the three original equations.

                            2xone  + 5x2  +  7x3  =  2                    offset original equation

                         2xane  + 5(1) +  seven(-ane)  =  2

                                                2xi    =  4

                                                  x1    =  2                    or

                             4xane  - 4xtwo  -  3x3  =   seven                    second original equation

                         4x1  - four(ane)  -  3(-1)  =  seven

                                                4x1    =  viii

                                                  ten1    =  2             or

                             3xane  - 3xtwo  -  2xiii  =  5                     tertiary original equation

                           3x1  - 3(one)  -2(-1)  =  5

                                                3x1    =  6

                                                  x1    =  2

Substitution method

This involves expressing one variable in terms of another until at that place is a single equation in one unknown.  This equation is then solved for that one unknown.  The result is then used to solve for the variable which was expressed in terms of the variable whose solution has merely been found.

Case

            12x  - 7y  =  106                                 first equation

            8x    +  y    =  82                                 2d equation

            Solve the 2d equation for y and then substitute the value obtained for y in the offset equation.

            y  =   82   -   8x                                   second equation solved for y

            12x  - 7(82 – 8x) =  106                     first equation rewritten in terms of x

            12x  - 574   +56x =  106

            68x   =   680

            x    =   ten

Substitute the value obtained for ten in either of the original equatioins.

            12x  - 7y  =  106                                 first equation

            12(ten)  - 7y  =  106

            7y  =  xiv

            y  =  two

            8(10)    +  y    =  82                            second equation

            y    =  two

[Index]


How To Find X Value In System Of Equations,

Source: http://www.columbia.edu/itc/sipa/math/systems_linear.html

Posted by: griffiththerret99.blogspot.com

0 Response to "How To Find X Value In System Of Equations"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel